Search results

1 – 10 of over 5000
Article
Publication date: 17 August 2018

Shipra Aggarwal and R.K. Pandey

The purpose of this paper is to conceive a new surface texture incorporating a tiny shape among the micro-pockets (with circular, rectangular, trapezoidal and triangular…

Abstract

Purpose

The purpose of this paper is to conceive a new surface texture incorporating a tiny shape among the micro-pockets (with circular, rectangular, trapezoidal and triangular cross-sections) and dimples (cylindrical, hemispherical and ellipsoidal) for exploring to enhance the maximum possible performance behaviors of sector shape pad thrust bearing.

Design/methodology/approach

Numerical simulation of hydrodynamically lubricated sector shape textured pad thrust bearing has been presented incorporating thermal and cavitation effects. The coupled solution of governing equations (Reynolds equation, film thickness expression, viscosity–temperature relation, energy equation and Laplace equation) has been achieved using finite difference method and Gauss–Seidel iterative scheme.

Findings

With new textured pads, higher load-carrying capacity and lower coefficient of friction are obtained in comparison to plain sector shape pad. Texture pattern comprising square cross-sectional pockets yields higher load-carrying capacity and lower coefficient of friction in comparison to other cross-sectional shapes (circular, trapezoidal and triangular) of pockets considered herein.

Originality/value

This study reports a new texture, which involves micro-pockets of square cross-sectional shapes to improve the performance behavior of sector shape pad thrust bearing. About 75 per cent increase in load carrying capacity and 42 per cent reduction in coefficient of friction have been achieved with pad having new texture in comparison to conventional pad.

Details

Industrial Lubrication and Tribology, vol. 70 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Case study
Publication date: 30 July 2018

Goutam Dutta

S. R. Pandey, Superintending Engineer (SE), Rural Roads Department, Bihar wanted to have a meeting of all the agencies involved, including his other engineers, the contractors to…

Abstract

S. R. Pandey, Superintending Engineer (SE), Rural Roads Department, Bihar wanted to have a meeting of all the agencies involved, including his other engineers, the contractors to discuss his village road-making project in Pradhan Mantri Gram Sadak Yojona (PMGSY). This case discusses how the concept of work breakdown is used to subdivide all the activities of road-making into different sub activities (earthwork, bridgework, roadwork and other miscellaneous activities) in different levels.

Details

Indian Institute of Management Ahmedabad, vol. no.
Type: Case Study
ISSN: 2633-3260
Published by: Indian Institute of Management Ahmedabad

Keywords

Article
Publication date: 19 July 2019

Swati Yadav, Rajesh K. Pandey, Anil K. Shukla and Kamlesh Kumar

This paper aims to present a high-order scheme to approximate generalized derivative of Caputo type for μ ∈ (0,1). The scheme is used to find the numerical solution of generalized…

Abstract

Purpose

This paper aims to present a high-order scheme to approximate generalized derivative of Caputo type for μ ∈ (0,1). The scheme is used to find the numerical solution of generalized fractional advection-diffusion equation define in terms of the generalized derivative.

Design/methodology/approach

The Taylor expansion and the finite difference method are used for achieving the high order of convergence which is numerically demonstrated. The stability of the scheme is proved with the help of Von Neumann analysis.

Findings

Generalization of fractional derivatives using scale function and weight function is useful in modeling of many complex phenomena occurring in particle transportation. The numerical scheme provided in this paper enlarges the possibility of solving such problems.

Originality/value

The Taylor expansion has not been used before for the approximation of generalized derivative. The order of convergence obtained in solving generalized fractional advection-diffusion equation using the proposed scheme is higher than that of the schemes introduced earlier.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 February 2023

Sumit Kumar Mehta and Sukumar Pati

The purpose of this paper is to investigate computationally the hydrothermal characteristics for forced convective laminar flow of water through a channel with a top wavy wall and…

Abstract

Purpose

The purpose of this paper is to investigate computationally the hydrothermal characteristics for forced convective laminar flow of water through a channel with a top wavy wall and a flat bottom wall having metallic porous blocks.

Design/methodology/approach

The governing equations are solved computationally using a finite element method–based numerical solver COMSOL Multiphysics® for the following range of parameters: 10 ≤ Reynolds number (Re) ≤ 500 and 10–4 ≤ Darcy number (Da) ≤ 10–1.

Findings

The presence of porous blocks significantly influences the heat transfer rate, and the value of local Nusselt number increases with the increase in Da. The value of the average Nusselt number decreases with Da for the top wall and the same is enhanced for the bottom wall of the wavy channel with porous blocks (WCPB). The value of the average Nusselt number for WCPB is significantly higher than that of the wavy channel without porous block (WCWPB), plane channel without porous block (PCWPB) and plane channel with the porous block (PCPB) at higher Re. For PCPB, the performance factor (PF) is always higher than that of WCWPB and WCPB for Da = 10–4 and Da = 10–3. Also, PF for WCPB is higher than that of WCWPB for higher Re except for Da = 10–4. Further, the value of for WCPB is higher than that of PCPB at Da = 10–2 and 10–1 at Re = 500.

Practical implications

The current study is useful in designing efficient heat exchangers for process plants, solar collectors and aerospace applications.

Originality/value

The analysis of thermo-hydraulic characteristics for laminar flow through a channel with a top wavy wall and a flat bottom wall having metallic porous blocks have been analyzed for the first time. Further, a comparative assessment of the performance has been performed with a wavy channel without a porous block, a plane channel without a porous block and a plane channel with porous blocks.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 March 2024

Priyanka Goyal and Pooja Soni

The present research study aims to explore the impact of the most recent Israeli–Palestinian conflict, which unfolded in October 2023, on global equity markets, including a wide…

Abstract

Purpose

The present research study aims to explore the impact of the most recent Israeli–Palestinian conflict, which unfolded in October 2023, on global equity markets, including a wide range of both emerging and developed markets (as per the Morgan Stanley Capital Investment country classification).

Design/methodology/approach

The market model of event study methodology, with an estimation window of 200 days and 28-day event window (including event day, i.e. October 7, 2023), has been employed to investigate the event’s impact on the stock markets of different countries, with 24 emerging countries and 23 developed countries. The daily closing prices of the prominent indices of all 47 countries have been analyzed to examine the impact of the conflict on emerging markets, developed markets and overall global equity markets. Additionally, cross-sectional regression analysis has been performed to investigate the possible explanations for abnormal returns.

Findings

The findings of the study suggest the heterogeneous impact of the selected event on different markets. Notably, emerging markets and the overall global equity landscape exhibited substantial negative responses on the event day, as reflected in average abnormal returns of −0.47% and −0.397%, respectively. In contrast, developed markets displayed resilience, with no significant negative impact observed on the day of the event. A closer examination of individual countries revealed diverse reactions, with Poland, Egypt, Greece, Denmark and Portugal standing out for their positive or resilient market responses. Poland, in particular, demonstrated significantly positive cumulative abnormal returns (CARs) of 7.16% in the short-term and 8.59% in the long-term event windows (−7, +7 and −7, +20, respectively), emphasizing its robust performance amid the geopolitical turmoil. The study also found that, during various event windows, specific variables had a significant impact on the CARs.

Practical implications

The study suggests diversification and monitoring of geopolitical risks are key strategies for investors to enhance portfolio resilience during the Israeli–Palestinian conflict. This study identifies countries such as Poland, Egypt, Greece, Denmark and Portugal with positive or resilient market reactions, providing practical insights for strategic investment decisions. Key takeaways include identifying resilient markets, leveraging opportunistic strategies and navigating market dynamics during geopolitical uncertainties.

Originality/value

As per the authors’ thorough investigation and review of the literature, the present study is the earliest attempt to explore the short-term and long-term impact of the 2023 Israeli–Palestinian conflict on equity markets worldwide using the event study approach and cross-sectional regression analysis.

Details

Journal of Economic Studies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0144-3585

Keywords

Article
Publication date: 29 September 2022

Shafaq Idrees and Umer Saeed

In this article, the authors aims to introduce a novel Vieta–Lucas wavelets method by generalizing the Vieta–Lucas polynomials for the numerical solutions of fractional linear and…

Abstract

Purpose

In this article, the authors aims to introduce a novel Vieta–Lucas wavelets method by generalizing the Vieta–Lucas polynomials for the numerical solutions of fractional linear and non-linear delay differential equations on semi-infinite interval.

Design/methodology/approach

The authors have worked on the development of the operational matrices for the Vieta–Lucas wavelets and their Riemann–Liouville fractional integral, and these matrices are successfully utilized for the solution of fractional linear and non-linear delay differential equations on semi-infinite interval. The method which authors have introduced in the current paper utilizes the operational matrices of Vieta–Lucas wavelets to converts the fractional delay differential equations (FDDEs) into a system of algebraic equations. For non-linear FDDE, the authors utilize the quasilinearization technique in conjunction with the Vieta–Lucas wavelets method.

Findings

The purpose of utilizing the new operational matrices is to make the method more efficient, because the operational matrices contains many zero entries. Authors have worked out on both error and convergence analysis of the present method. Procedure of implementation for FDDE is also provided. Furthermore, numerical simulations are provided to illustrate the reliability and accuracy of the method.

Originality/value

Many engineers or scientist can utilize the present method for solving their ordinary or Caputo–fractional differential models. To the best of authors’ knowledge, the present work has not been used or introduced for the considered type of differential equations.

Article
Publication date: 16 August 2019

Vivek Bhardwaj, R.K. Pandey and V.K. Agarwal

The purpose of this paper is to develop an energy-efficient and dynamically improved thrust ball bearing using textured race. A texture has been used on the stationary race of the…

Abstract

Purpose

The purpose of this paper is to develop an energy-efficient and dynamically improved thrust ball bearing using textured race. A texture has been used on the stationary race of the test bearing to conduct the long-duration experiment for exploring its tribological and vibrational behaviours under starved lubricating condition using micro size MoS2 blended grease. The performance behaviours of the textured race bearing have been compared with conventional bearing (i.e. having both races without textures) under the identical operating conditions for demonstrating the advantages of textured race.

Design/methodology/approach

Texture was created on stationary race of the test ball bearing (51308) using nano-second pulsed Nd: YAG laser. Performance parameters (frictional torque, temperature rise and vibrations) of textured ball bearings were measured under severe starved lubricating conditions for understanding the critical role of texture in the long duration of the test. S-type load cell and miniature accelerometer were used for measuring the frictional torque and vibration, respectively. Bulk temperature at stationary races (at the back side) of test bearings was measured in operating conditions using a non-contact infrared thermometer.

Findings

Significant reduction in frictional torque and decrease in amplitude of vibration with textured ball bearing were found even under the severe starved lubricating condition in comparison to conventional bearing.

Originality/value

There is dearth of research pertaining to the performance behaviours of ball bearings using textures on the races. Therefore, an attempt has been made in this study to explore the tribo-dynamic performance behaviours of a thrust ball bearing using a texture on its stationary race under severe starved lubricating condition for the longer duration of the test.

Details

Industrial Lubrication and Tribology, vol. 71 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 August 2020

Amit K. Verma, Narendra Kumar and Diksha Tiwari

The purpose of this paper is to propose an efficient computational technique, which uses Haar wavelets collocation approach coupled with the Newton-Raphson method and solves the…

Abstract

Purpose

The purpose of this paper is to propose an efficient computational technique, which uses Haar wavelets collocation approach coupled with the Newton-Raphson method and solves the following class of system of Lane–Emden equations:

(tk1y(t))=tω1f1(t,y(t),z(t)),
(tk2z(t))=tω2f2(t,y(t),z(t)),
where t > 0, subject to the following initial values, boundary values and four-point boundary values:
y(0)=γ1, y(0)=0, z(0)=γ2, z(0)=0,
y(0)=0, y(1)=δ1, z(0)=0, z(1)=δ2,
y(0)=0, y(1)=n1z(v1), z(0)=0, z(1)=n2y(v2),
where n1,n2,v1,v2(0,1) and k10,k20,ω1<1,ω2<1, γ1, γ2, δ1, δ2 are real constants.

Design/methodology/approach

To deal with singularity, Haar wavelets are used, and to deal with the nonlinear system of equations that arise during computation, the Newton-Raphson method is used. The convergence of these methods is also established and the results are compared with existing techniques.

Findings

The authors propose three methods based on uniform Haar wavelets approximation coupled with the Newton-Raphson method. The authors obtain quadratic convergence for the Haar wavelets collocation method. Test problems are solved to validate various computational aspects of the Haar wavelets approach. The authors observe that with only a few spatial divisions the authors can obtain highly accurate solutions for both initial value problems and boundary value problems.

Originality/value

The results presented in this paper do not exist in the literature. The system of nonlinear singular differential equations is not easy to handle as they are singular, as well as nonlinear. To the best of the knowledge, these are the first results for a system of nonlinear singular differential equations, by using the Haar wavelets collocation approach coupled with the Newton-Raphson method. The results developed in this paper can be used to solve problems arising in different branches of science and engineering.

Details

Engineering Computations, vol. 38 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Abstract

Details

The Mindful Tourist: The Power of Presence in Tourism
Type: Book
ISBN: 978-1-80117-637-8

Article
Publication date: 25 May 2021

Amit K. Verma, Narendra Kumar, Mandeep Singh and Ravi P. Agarwal

In this article, the authors consider the following nonlinear singular boundary value problem (SBVP) known as Lane–Emden equations, −u″(t)-(α/t) u′(t) = g(t, u), 0 < t < 1 where α

Abstract

Purpose

In this article, the authors consider the following nonlinear singular boundary value problem (SBVP) known as Lane–Emden equations, −u″(t)-(α/t) u′(t) = g(t, u), 0 < t < 1 where α ≥ 1 subject to two-point and three-point boundary conditions. The authors propose to develop a novel method to solve the class of Lane–Emden equations.

Design/methodology/approach

The authors improve the modified variation iteration method (VIM) proposed in [JAAC, 9(4) 1242–1260 (2019)], which greatly accelerates the convergence and reduces the computational task.

Findings

The findings revealed that either exact or highly accurate approximate solutions of Lane–Emden equations can be computed with the proposed method.

Originality/value

Novel modification is made in the VIM that provides either exact or highly accurate approximate solutions of Lane-Emden equations, which does not exist in the literature.

Details

Engineering Computations, vol. 38 no. 10
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 5000